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1. APPLICATION OF THE FOURIER SLICE THEOREM

As the HEK cell is immersed in PBS (RI = 1.334), the scattering potential of the HEK293 cell is
small, corresponding to max(∆η) ≈ 0.06, based on commonly found intracellular matter such
as the nucleus or the nucleolus [1]. The weak scattering implies the applicability of the Fourier
diffraction theorem (FDT) for tomography [2]. With FDT, object frequencies (in wave vector-space)
up to

√
2km = 18.52 rad µm−1 can be retrieved, where km =

2πηm
λ0

, λ0 = 640 nm, and ηm = 1.334
is the RI of PBS. The spectrum of each measurement maps to a hemispherical surface with radius
km in the spectrum of the specimen.

In this paper, our goal is to demonstrate that while the integration of Coded WFS with standard
microscopes is simple (as evidenced by Fig. 1 a in the main manuscript), it enables both quantita-
tive phase imaging of dynamic specimens and tomography. Therefore, we apply a smoothing
Gaussian filter with σ = 3.5 as it immediately simplifies the tomography problem in Sect. 3.4
(of the main manuscript) by (i) mitigating the specimen jitter observed between frames and (ii)
limiting the frequency coverage of the OPD projections of the 3D RI distribution. The latter
provides tolerance against errors in the approximated pose and enables the use of the simpler
Fourier slice theorem (FST). We provide further details about the applicability of FST here.

Fig. S1 shows the phase ϕ(x, y) [in rad] of a single HEK293 cell measurement retrieved by
Coded WFS and its spectrum (in log -scale) in the object space. The radius of the dashed green
circle enclosing the spatial frequencies collected by the NA of the objective (NAobj = 1.15) is

given by πηm × NAobj
0.61λ0

= 12.34 rad µm−1.
After convolving the retrieved phase with a Gaussian filter, the resulting spectrum as shown in

Fig. S2 (left) is enclosed by the dashed circle with radius 5.5 rad µm−1 in the case of Coded WFS
and 6.5 rad µm−1 for DHM. In Fig. S2 (right), we draw the 2D semicircular arcs with radius km
centered ||km|| from the center of the spectrum to display the angular frequency support provided
by FDT. When the spectrum of the measurements is mapped to the spectrum of the specimen
Fig. S2, the frequency coverage is limited to the dashed red and blue circles for Coded WFS and
DHM, respectively. Within this region, the curvature of the hemispherical surfaces is small, and
if approximated with planes instead, it would be equivalent to the Fourier slice theorem. Note
that errors in this approximation are smaller for lower frequencies, which have larger coefficients.
Henceforth, we use the FST algorithm to retrieve a low-pass filtered 3D RI distribution of the
object shown in Fig. 4 in the main manuscript.
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Fig. S1. Frequency coverage of the optical system. Phases [rad] retrieved using Coded WFS
and DHM (left) and the magnitude of their spectrum [log−space] (right). The spatial frequen-
cies are limited by the NA of the objective drawn with dashed green circles.

Fig. S2. Mapping projection spectrum to specimen spectrum. The magnitude of the spectrum
[log−space] of the spatially smoothed phases (left) are mapped to the spectrum of the spec-
imen (right). On the right, the dashed black circle encloses the frequency coverage provided
by FDT, whereas the dashed red and blue circles enclose the maximum frequency coverage
provided by the filtered phases using Coded WFS and DHM, respectively.
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